Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(12): 5405-5418, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483317

RESUMO

Per- and polyfluoroalkyl substances (PFASs), with significant health risks to humans and wildlife, bioaccumulate in plants. However, the mechanisms underlying plant uptake remain poorly understood. This study deployed transcriptomic analysis coupled with genetic and physiological studies using Arabidopsis to investigate how plants respond to perfluorooctanesulfonic acid (PFOS), a long-chain PFAS. We observed increased expressions of genes involved in plant uptake and transport of phosphorus, an essential plant nutrient, suggesting intertwined uptake and transport processes of phosphorus and PFOS. Furthermore, PFOS-altered response differed from the phosphorus deficiency response, disrupting phosphorus metabolism to increase phosphate transporter (PHT) transcript. Interestingly, pht1;2 and pht1;8 mutants showed reduced sensitivity to PFOS compared to that of the wild type, implying an important role of phosphate transporters in PFOS sensing. Furthermore, PFOS accumulated less in the shoots of the pht1;8 mutant, indicating the involvement of PHT1;8 protein in translocating PFOS from roots to shoots. Supplementing phosphate improved plant's tolerance to PFOS and reduced PFOS uptake, suggesting that manipulating the phosphate source in PFOS-contaminated soils may be a promising strategy for minimizing PFOS uptake by edible crops or promoting PFOS uptake during phytoremediation. This study highlighted the critical role of phosphate sensing and transport system in the uptake and translocation of PFOS in plants.


Assuntos
Ácidos Alcanossulfônicos , Arabidopsis , Fluorocarbonos , Humanos , Fosfatos , Redes Reguladoras de Genes , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Fósforo/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
2.
Protein Sci ; 32(8): e4717, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402649

RESUMO

Abrupt aggregation of misfolded proteins is the underlying molecular cause of numerous severe pathologies including Alzheimer's and Parkinson's diseases. Protein aggregation yields small oligomers that can later propagate into amyloid fibrils, ß-sheet-rich structures with a variety of topologies. A growing body of evidence suggests that lipids play an important role in abrupt aggregation of misfolded proteins. In this study, we investigate the roles of length and saturation of fatty acids (FAs) in phosphatidylserine (PS), an anionic lipid that is responsible for the recognition of apoptotic cells by macrophages, in lysozyme aggregation. We found that both the length and saturation of FAs in PS contribute to the aggregation rate of insulin. PS with 14-carbon-long FAs (14:0) enabled a much stronger acceleration of protein aggregation compared to PS with 18-carbon-long FAs (18:0). Our results demonstrate that the presence of double bonds in FAs accelerated the rate of insulin aggregation relative to PS with fully saturated FAs. Biophysical methods revealed morphological and structural differences in lysozyme aggregates grown in the presence of PS with varying lengths and FA saturation. We also found that such aggregates exerted diverse cell toxicities. These results demonstrate that the length and saturation of FAs in PS can uniquely alter the stability of misfolded proteins on lipid membranes.


Assuntos
Amiloide , Insulinas , Agregados Proteicos , Amiloide/química , Proteínas Amiloidogênicas , Muramidase/química , Fosfatidilserinas , Humanos , Doenças Neurodegenerativas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...